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ABSTRACT

Three techniques of holographic interferometry were developed to
study the response of geological materials to propagating stress waves.
Two of these techniques, stored~beam interferometry and double-exposure
interferometry, were found effective when applied to studying small-
amplitude wave propagation. The third technique, a form of time-average
holographic interferometry (which produces fringes relating to velocities),
was employed when studying higher stress levels (up to 30 kb). Low
amplitude stress waves were generated by pendulum impacts; a gas gun
was used to obtain higher stress levels. A complete description of
each technique is given herein, together with a comparison of

experimental results (using Westerly granite) and theoretical predictions.



FOREWORD

This report was prepared by the Applied Mechanics Laboratory of TRW
Systems Group, Redondo Beach, California under Defense Atomic Support Agency
Contract DASA-01-69-C-0152. Mr. C. B. McFarland served as the contract
monitor for DASA. Program manager at TRW Systems was Mr. R. Aprahamian.
Technical support was contributed by Mr. J. L. Jacoby, Mr. J. D. O'Keefe,
Di. D. A. Evensen and Mr. J. E. Wright., Dr. T. J. Ahrens of the California
Institute of Technology served as consultant.

Initially the research carried out on this program was directed
toward developing holographic instrumentation and techniques which could
be used to measure the effects of cracks and porosity in geological
materials on stress wave propagation. Several promising techniques were
uncovered in the initial months of this investigation. As our work progressed
and as a result of discussions with the DASA technical monitor, our research
objectives developed toward applying our holographic instrumentation to
measuring the constitutive properties of Westerly granite. This report
summarizes the results of both the techniques development phase and the

equation of state measurement phase of the present program.
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1.0 INTRODUCTION

The equation of state of the geological material in which an under-~
groumd explosion is detonated affects the stress wave which is propagated
out to teleseismic distances. Knowledge of the equation of state of the
medium permits theoretical calculation of stress wave profiles and is thus
important in distinguishing underground tests from naturally occurring
earthquakes. 1In addition to the discrimination )roblem, ultimate under-~
standing of the interactive effects of the explosive configuration and
various surrounding media will provide the quantitative basis for placing
bounds on test parameters when events are monitored at tuleseismic distances.

To properly describe the wave propagation phenomena, usually by means
of finite difference techniques, the medium in which the waves propagate
must be correctly modeled. Material models, or constitutive relations, for
geological materials are difficulr to obtain. For most geological materials,
the combined effects of inhomogeneity, stress relaxation, phase changes,
strain-rate effects and porosity give rise to a complex mechanical response.
Even for the simplest geological materials, constructing a complete con-

2
stitutive relation from 101“

to 1 dyne/cm2 stress levels (12 orders of
magnitude) presents a challenging problem. The present prograr has been
concerned with developing and applying holographic techniques in obtaining
equation of state data in the 0.1 to 30 kbar stress range.

When studying a material undergoing dynamic loading and subsequent
unloading, the problem of describing the constitutive relation naturally
divides ftself into the following twu phases:

(1) describing the state achieved during what is usually the shock

compression. (This often amounts to describing the material's

Hugoniot curve.)



(2) description of the state achieved during unloading which involves
determining both the release adiabats, and most importantly, prescribing
the rheological behavior, i.e., the relationship between principal
stresses and strains, of the medium after it has undergone an initial
finite, high-strain-rate deformation.

As in conventional shock wave experiments, states along the Hugoniot,
in the 30 kbar range were obtained by measuring the shock velocity and
particle velocity and applying the Rankine-Hugoniot jump conditions. This
determines the thermodynamic state variables: pressure, density and
specific i{nternal energy. These experiments involved a form of time-
average holography and are described in Section 5. The rarefaction wave
or unloading velocity in Westerly granite was also studied in these experi-
ments. Loading and unloading states in the 0.1 kbar range were measvred
by the relatively new methods of stored-beam and double-exposure holo-
graphic interferometry. The techniques and results are discussed in
Section 4. Initially, 2024 aluminum and then Westerly granite were studied
under this program. These materials were chosen so as to obtain results
which would overlap with previous experimental work and hence establish
the credibility of the data obtained with our new techniques.

The objective of this program was to develop instrumentation to record
holographically the profiles of propagating stress waves in granite speci-
mens. Three techniques of holographic interferometry were developed to meet
this objective, viz., stored-beam, double-exposure and a form of time averaged

interferometry (which produces fringes relating to velocities).



These techniques were successfully applied to obtain data, such as
o The axial and radial deformation of a cylinder impacted at
one end by a spherical pendulum
o The displacerent-time history of the free-end of a cylinder
impacted at one end by a spherical pendulum
o Hugoniot data points, and
o Lateral release wave and catch-up wave velocities in
dynamically stressed granite.
while still retaining the noncontacting advantage of the techniques. In
each instance, the data obtained by these techniques compared favorably
with data published in the literature.

In the course of this study it was found that Jate ~an be generated by
the velocity interferometric technique which cannot be attained by any other
method. For example, the catch-up wave and lateral release wave velocities
can be measured for a given event allowing the sonic velocity in two different
directions to be measured simultaneously. From these data, the anisotropy in
the sonic velocity induced by the uniaxial straining of the shock wave can
be determined. This is possible because of the full field recording capability

of holography.

The development of the holographic techniques achieved a major objective
of this phase of the study. Further work should be done to exploit the
capabilities of these techniques and to generate more extensive and

accurate data on geologic materials of interest.



2.0 MATERIAL DESCRIPTION

Westerly granite was chosen as the material used in this study
because some of its properties are relatively well known. Data published
ir the literature serves as a useful guide in evaluating the new holographic
techniques. Specimens of granite which were mined from a quarry in Westerly,
Rhode Island, were obtained from the Bottinelli Granite Company, New London,
Connecticut. Forty cylinders measuring 2" in diameter with a minimum length
of 10" were received in a rough core cut state (Figure 1). Cutting and
centerless grinding of the specimens was later performed by Blanchard Masters

Grinding Corporation of Hawthorne, California.

Figure 1: Westerly granite specimens used in this
investigation
Before using the granite in experiments, a number of tests were
made to determine its static properties. After machining, a repre~sntative

sampie of granite was measured geometrically and weighed. The density, o,



was found to be 2.616 gm/cm3. Poisson's ratio, v, and Young's Modulus, E,

of a representative sample was measured using a uniaxial compression test.

Foil strain gauges (Figure 2) were used to measure longitudinal and traverse
strain produced upon compressing the sample in a Baldwin Universal Testing
Machine. The stress was obtained from the force gauge on the machine and is
known to a precision of + 0.33%. For the sample tested, it was found that
the average elastic constants over the longitudinal stress range from O to

1 kbar were:

v = 0.23 + .005

11

E = 5.0 + .02 x 10! dyne/cm?

Corresponding values tabulated from the Handbook of Physical

1
Constants vary from .065 to .271 for Poisson's ratio and from 3.99 x 1011

11

to 7.05 x 10 dynes/cm2 for Young's Modulus.

Figure 2: Test setup to measure Poisson's ratio and
Young's Modulus of Westerly granite



3.0 PHENOMENOLOGY OF IMPACTS

Wave propagation in cylindrical bars is a long standing problem
of both academic and grzat practical interest. Tha firet analytical
solutions to the problem of elastic wave propagation in an infinite bar

2 yn 1876 and independently by Chree> in 1889.

were obtained by Pochhammer
In 1941, Bancroft4 obtainad numerical values for tha Pochhammer-Chree
frequency equation. Work has continued up to tha presant time in obtaining

solutions to the exact equations of -otion.s'6

Tha analytical solutions
which wera obtained by these aarly researchers are valid only asymsptotically,
i.e., on the order of ten bar diameters from point of impact, and are of
lictle value for the determination of the initial impact pulsa. Numerical
codes have been developed which will integrate tha axact equations of

1,8 Few numerical solutions

motion for both elastic and non-elastic media.
have baan obtained bacausa of tha cost of long running times of multi-
dimensional condes. In tha following sactions, the physics of impict of
identical elastic, purely plastic and alastic-plastic bars will be present-

ed and the derivation of constitutive relations will ba discussed.

3.1 Mechanism of Impact

The simplast case of impact is the symmetrical impact of two identical
perfectly elastic cylindem.7 Upon impact, two plana alastic shock waves
propagate from the plane of impact into the two rods. (The shock front
here is defined as a finite step in the stress magnitude). The shocked
material is in a state of uniaxial strain in tha axial direction, i.a.,
particle motion in the axial direction only, and triaxial stress. Since

the surface of the cylinder is unconstrained, thosa particles near the



surface which have been engulfed by the shock front are accelerated in
the radial direction (Poisson's effect). It is this lateral inertia
which causes the complex spatial and temporal response of the rod to the
simple step loading of the impact.9 The release waves associated with
this radial acceleration of particles will have hoth shear and dilatational
components. The state of uniaxial strain in the elastic shock has a
duration determined by the time it takes dilatational elastic waves excited
by the passage of the shock across the surface to diminish the thickness
of the shock front to infinitesmal proportions. This occurs at an axial
position on the order of several bar diameters. From this point on, the
wave evolves from the previous uniaxial strain state to a strain state
characterizing a plane stress wave. Oscillations occur behind the stress
wave front due to multiple reflections from the bar surface of waves that
were excited by the initial passage of the shock. Elastic waves in bars
propagate dispersively with the higher frequency waves propagating more
slowly than the lower. This causes the sharp fronted elastic shock in
the propagation to spread out and asymptotically approach to profile
associated with the lowest order mode that can propagate.

The symmetical impact of two identical, perfectly-plastic bars
would be the next order of complexity. Here, as opposed to the elastic
case, the velocity of propagation of the wave is not constant, but depends
on the changing slope of the stress-strain curve. The greater the slope
the higher the velocity of propagation.lo The stress~strain curve for
uniaxial strain is such that azo/acz > 0. This means that higher velocities

of propagation are associated with larger strains, and stable shock waves



will thus form. The stress-strain curve for uniaxial stress is such
that 320/352 < 0. Here the larger the strain, the lower the velocity
of propagation, and hence the shock waves are not stable and spread out
in time.

The case where the bars are elastic-perfectly plastic, as the name
implies, combines some of the aspects of both tlie elastic and perfectly-
plastic cases. However, there are considerable complications introduced
by the interaction and coupling of the elastic and plastic wave systems.B’lo
The stress-strain curve for plane-stress is linear up to the yield point
and from then on 320/352 < 0. At the intersection point of the elastic
and elastic-plastic regime, the slope of the stress-strain curve decreases
discontinuously. This gives rise to both an elastic and plastic wave
propagation for states at stresses above the intersection point. This
implies that the elastic wave velocity is greater than the plastic wave
velocity. The stress-strain curve for uniaxial strain is also linear
up to the yield point but at higher stresses, 320/852 > 0. At some point
(Rayleigh Point) on the plastic portion of the plane strain curve, the
slope of the line from the initial to final state will be equal to the
slope of the elastic regime. Below this point, plastic waves will
propagate with velocitles less than the elastic waves and above that point
plastic waves will propagate with velocities that are greater than the
elastic waves. The condition that azo/aez > 0 satisfied by the stress-
strain curve will allow the formation of stahle plastic shocks; and an

initially sharp fronted stress pulse can break up into an elastic and a

plastic wave depending on the initial stress magnitudes. For very low



velocities of impact, the stresses will be elastic and the waves will
propagate in the manner previously discussed. For very high velocities,
the initial uniaxial plastic shock will propagate in a stable manner with
a velocity exceeding the elastic longitudinal velocity. The uniaxial
strain wave will propagate until release waves having both elastlc and
plastic components overtake and attenuate it. As the plastic wave is
attenuated, a point will be reached where the elastic wave velocity
exceeds the local plastic wave velocity and the wave will become unstable
and break up into an elastic and plastic portion.

For propagation in a finite diameter rod, the plastic wave will
deviate from a state of plane strain at an axial position on the order of
one bar diameter, while the elastic portion of the wave will be in a state
of plane strain for several bar diameters. For intermediate velocities
of impact the initial uniaxial plastic shock will be unstable and break
up into plastic and elastic waves. The attenuation of these waves will
proceed as before. Both the elastic and plastic uniaxial strain waves
will evolve into plane stress waves.

Some of the other major material properties that can complicate the
bar response are strain rate effects, phase changes and porosity. One of
the manifestations of strain rate is a variation in the amplitude of
precursor elastic waves. Phase changes can cause the initial uniaxial
shock to become unstable and break up into two or more shocks. This would
be especially important in rocks whose mineralogical constituents may have
high pressure polymorphs. Porosity can greatly effect the initial uniaxial
shock and the partitioning of the thermal and lattice components of energy

in the wave.



At this point it should be apparent that there are two spatial
regimes in the bar in which the wave systems induced are simple enough
that surface measurements can yield information as to the constitutive
properties of the bar material. These are the plane strain regime near
the impact end and the plane stress regime on the order of ten bar radii
from the impact end.
3.2 Plane Stress Regime

The plane stress regime has long been used in the measure of material
response. An enormous number of experiments have been performed on metals,

Jolillolizode Simultaneous measurement of any

simple materials and rocks.
two of the following, axial strain, axial particle velocity, axial stress
or wave velocity suffices to determine a point on the material's stress-
strain curve. The planarity of the impact has little effect in the plane
stress region. A non-planarity in the impact serves to excite higher modes
of the rod. Since, however, the rod is dispersive and the higher modes
have lower propagation velocities, the wave front is dominated by the
lowest mode. The one-dimensional uniaxial stress non-linear wave prop-
agation theory of G. I. Taylor, T. von Karman and K. A, Rakhatulin provides
interrelationships between the above variables.11 The explicit applications
of one-dimensional stress propagation in an elastic rod to measuring
constitutive properties is discussed below.

To understand longitudina1|wave propagation in a rod, the simplest
theory to apply is based upon the assumption of plane, elastic waves.
This theory assumes that plane cross sections remain plane, and that only

axial stresses are present, being uniformly distributed across the

10



cross—section.
a0 ov
—.._.)_(.. = p.——
X Jt
ov st
X _ X
9X at
o = Ec
X X

The equations comprising this theory are

(Eyuation of motion) (1)
(Equation of continuity) 2)
(Constitutive behavior) (3)

In these equations, the following definitions apply:

o] = Axial Stress
X
Ju
£ = Axial Strain, ¢ = ——
X X X
u = Longitudinal Displacement
X = Axial Coordinate
v, = Axial Particle Velocity
t = Time

E = Modulus of Elasticity

0 = Mass lensity

The preceding equations can be combined into single wave equations

such as
32r1x 1 7)21x
= (4)
Z)xz [o4 2 t)tz
o
or
Bzux 1 Bzux
=3 2 (5)
Bx C n)t
o
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Ig- » 1s the so-called "bar velocity'". The

where the wave speed, c. Fy
C

limitations of this elementary theory have been discussed extensively

by bavies (Ref. 9). Davies points out that the eclementary theory is
very nearly correct when the duration of the pulse is long compared with
the time required for a wavefront to move across the diameter of the

rod.

Consider a circular rod of radius a, which is subjected to a stress-

time history

= o sin 2% 0<t<T
. (6)

= 0 T<t<w

at the end x = 0. (See Flgure 3)

2a

Figure 3: Semi-infinite rod with an applied stress



The general solution of equation (4) is of the form
ox(x.t) = F(x - cot) + G(x + cot) (7)
which can be combined with (6) to give

ox(x,t) = 4xo sin { (cot - x) (8)

For 0€c t - x<c T
o o

ox(x.t) = 0 For

In equation (8), the pulse length is L = coT. where T is the pulse duration

It should be noted that Sy is the maximum value of the applied stress
o

and also is the maximum stress in the rod.

To compute the longitudinal displacements, we have

Dux O
- —— = - U
€ i P (From Hooke's Law)
or
e o
u xo .
—a B sin i (cot ) (9)
By integration, we have
X=ct
o
qu
o dx = u, - ux(x.t) (10)
X x=ct
o

where u_= 0, at x = cot (the wavefront)

13



Using equation (9) in (10) gives

x=ct
axo
ux(x,t)-- -?o-sins(cot-x) dx
X
% x-cot
u(xt)--(:g k os!(ct-x) (11)
x E 3] €% L ‘%
x

2 (cot - x) - 1]

*c
o~
]
-
A
[ ]
Q
m
'0"
v
o~
=2~
h
0
(=
o
gl }

For 0<x - c t<cT
o o

At time t = T, (when the pulse has fully entered the rad) we have

o

x
ux(x,t) = (—Eg) (L"‘) [cos % (cot - x) - 1] (12)
Expanding equation (12) gives

%%
ux(x,t) s - (—l_:—q- (l;') [cos "—: + 1] 13)

which has a maximum value of

o
x
ux(ooT) = (_?o_) ('2;&)' where ax < 0

o

Similarly, the radial displacement on the surface can be calculated

from:

o
ur = Radial Displacement = - v -E’E a (14)

14



where v is Poisson's ratio. At time t = T, we have

o

x

[o] n
ur.-“(ﬁ) sin-i(co'l‘-x)

o
x
(<] %
u, -va(E) sin L (15)
where a 1is the radius of the circular rod. The maximum radial displacement

is given by

x
(ur)nax - v(i—o-) ,» where o, < 0
E (4]

The ratio of the maximum radial displacement to the maximum longftudinal

displacement is

va [n
R-L (2) at time t = T

As an example of thesc calculations, consider the case of an
aluminum rod, with an input pulse of 60 usec duration and an amplitude of

1560 psi (1.08 x 108 dyne/cmz) (compression). Then we have

c = Jt%_ = ,1965 in/usec = 0.50 cm/usec

11

9.3 x 10° 1b/1n® = 6.41 x 101! dynes/cm? ,(v = 0.248)

™
[}

L= co'l' = ,50 cm/usec x 60 usec = 30 cm

a=114inch = 2,54 cm (Bar Radius)

8
ux(x,‘l‘) -f_1.08 x 1(1)1 ) (30"(:!\) [1 + cos 33-;-]
6.41 x 10

15



For the longitudinal displacement

3

ux(x,T) = (1.60 x 10~ em} (1 + cos %g) (16)

and the radial displacemeant is (from equation 15)

u (x,T) = (.348)(2.54) -—1—°9-8—"—l‘1’:).,1,. ’%
6.41 x 10

aan

-3 X
ur(x,T) = (,148 x 10 ~ cm)(sin 55)

Equations (16) and (17) for the longitudinal and radial displacements
as a function of x are shown graphically in Figure 4. The holographic
measurement of the resultant strains from the impact at the end of a rod,

such as described above, 1s discussed in the next section.
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3.3 Plane Strain Regime

Measurements in the plane strain regime are commonly made with
impacts involving flat plates (i.e., length of bar much shorter than
radius). Particle motions are measured on the surface opposite to that
impacted. In this configuration, the shock wave is not affected by edge
effects in the region of interest.

When a finite amplitude, one-dimensional strain wave propagates in
a simple material, the wave form changes in time even in the absence of
viscous or dissipative mechanisms.la This non-linear aspect of the wave
propagation is a consequence of the increase of propagation velocity with
stress wave amplitude. Thus, in a simple compressional pulse as illustrated
in Figure 5, the high pressure elements of the wave propagate faster than
the lower pressure elements so that the compression wave front steepens
in time. Eventually these elements overtake one another and a discontinuity
in a mathematical sense occurs. This discontinuity is called a shock
wave. If viscous and dissipative effects are present,they are necessary
but not sufficient to preclude the existence of the discontinuity.ls
The field equationsl6, a complicated set of non-linear partial differential
equations along with appropriate constitutive functionals for the medium,
describe the evolution of the stress wave. The occurence of the shock
wave, which appears as a multivalued region in state space, is predicted
by the field equaiiuns, but its subsequent evolution must be described
both by the field equations and the jump conditions.la The jump conditions
for a normal discontinuity in the field variables yield the well known

conservation of mass, momentum and energy.17
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Figure 5: Evolution of a Compressional Stress
Pulse into a Shock Wave
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These are for a shock propagating into a medium at rest:

p 1 (18)

p(U= u) o

p-P
o}

o i - o (U= 0 (19)

1/2‘6U3 + pOEOU + POU =1/2 U - u)3 + pE(U - u) + P(U - u) (20)
where p, P, E, U, and u are the density, pressure, specific internal
energy, shock velocity and particle velocity respectively on either side
of the shock front. Using V = %, these equations can be manipulated to

give the following,

P-P_=p lu, (21)
p
o_U-u
I (22)
and -1 _
E'l= EO = 2(P + Po)(VO V). (23)

Equations (21), (22) and (23) are the Rankine--Hugoniot equations.
In general, we concern ourselves with pressures P so large that the
ambient pressure PO can be ignored. Clearly then, equations (21) and
(22) reveal that, for a material whose density 2 is known, measurements
of the shock velocity, U. and the particle velocity,u, determine the peak
pressure just behind the shock and the corresponding density,p. The
curve generated by the corresponding values of P and V is by definition
the Hugoniot or the Hugoniot equation of state for the solid. This curve
then represents physically those states P, V which can be obtained by

shock compression from the initial state PO, Vo. Finally, equation (23)
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can be used to calculate the internal energy difference,E - Eo’ for
the corresponding pairs of points P, V. The equation of state,along
with certain of the specific heats, is sufficient for a complete thermo-
dynamic description of a material.18 The equation of state in P, V,
E variables is a surface in P, V, E space. The Hugoniot with a given
initial state Po, Vo’ Eo’ describes a line on the equation of state surface.
The initial states can be varied in order to map out the equation of state
surface. One of the common techniques for this is to vary the porosity
of the material. The porosity, m, is defined as the ratio of the normal
density to the porous density. Besides using the Hugoniots to empirically
determine the high pressure equation of state, they are used as reference
states in many of the semi-analytical equations of state. Thus, the
Hugoniot can be used in a series of reference states in the Mie-Grunisen
equation of state enabling states which are not on the Hugoniot to be
described. For more complex responses in which elastic-plastic strain
rate effects may be manifest, a constitutive model must be assumed and
its parameters adjusted to characterize the observed response. One of
the several codes available for accomplishing this is SWAP.19

For the experiments described in Section 5, it is important to
minimize the tilt or the degree of non-planarity of impact. The reason
for this is that measurements of the shock and particle velocities cannot
be made locally but along various portions of the wave and therefore depend
on the planarity and known orientation of the wave for their accuracy.

When a shock wave impinges upon a free surface, a rarefaction wave

is generated upon reflection. A mass element which becomes encompassed

21



by such a rarefaction wave will undergo an adiabatic, although not

necessarily isentropic, process taking the material from the shocked

state to ambient pressures. Since the shock process takes the particles

from the ambient state to the shock state in a non-equilibriuwn manner,

only information about the final state can be obtained. In contrast,

the release process, at least for non-pathological materials, is a

continuous thermodynamic process and thus, in theory, information can be

obtained about all the states along the adlabatic release path.20
In the case of geologic materials, the equation of state is complicated

by the many high pressure polymorphs of the mineralogical constituents.21

A phase change causes an initial step function shock to become unstable

and break up into two shocks. By applying the jump conditions across the

two shocks, the point of phase transition can be determined. Knowing the

release adlabats in this case 1is especially important since it provides

a continuous sanmpling of the states off of the Hugoniot. The retention

of a strength or difference in principal stress in the high pressure

shock state also plays a central role in the attenuation of strong shock

waves., This 1s especlally the case in rocks in the regime above a few

kilobars and below the pressures at which phase transitions take place.

When release waves, such as those emanating from free surfaces, propagate

into shocked material, they travel at the local sonic velocity and overtake

and reduce the magnitude of the shock front. Measurements of the release

wave velocity are given in Section 5. The propagation characteristics of

the release waves can be used to obtain information as to the state of

the material behind the shock wave. Finite strength, phase changes and

porosity strongly influence this velocity.
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The above discussion has just touched upon some of the aspects
of stress and shock propagation and their relation to the equation of
state. For most geologic materials the combined effects of inhomogeneity,
stress relaxation, phase changes, friction on crack surfaces, strain rate
effects and porosity give rise to a complex mechanical response. Even
for the simplest structural and geologic materials, we do not have a
complete theoretical description of this response. It is with this
realization that we turn to the techniques for experimentally obtaining
these data.

In the following two sections, data obtained using the holographic

techniques are compared with the analyses described above.
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4.0 LOW AMPLITUDE ELASTIC WAVE PROPAGATION STUDIES IN THE PLANE
STRESS REGIMES

This section describes two holographic techniques to study low
amplitude (~0.1 kbar), plane stress waves propagating in cylinders. The
first technique, double-exposure interferometry, was developed allowing
both the axial and radial deformation of a stressed cylinder to be
measured simultaneously over the entire length of the rod. A comparison
of experimental data with analytical predictions is also presented.
Together with this technique, a method was developed allowing multiple
holographic frames of a single event t; be recorded. This technique
permits a 1 psec time separation between frames which record the dynamic
strain. This capability, however, has not yet been fully integrated
into the holographic system. A description of this method 1is given in
Appendix B.

The second technique, stored beam holographic interferometry, is
applied to monitoring the axial motion of the end of a rod which has been
impacted by a spherical pendulum. A comparison of the experimental

results with the analytical predictions is given.

4.1 Experiments Employing Double Exposure Holographic Interferometry
(Longitudinal Waves in a Rod)

The application of double-exposure interferometry to dynamic events

is made possible by the use of the pulsed ruby laser. The time duration
of the laser pulses is short enough (~50 nanoseconds) to "stop" the motion
of most events. This method involves making two holographic exposures in
succession on the same piece of film. Typically, the first exposure is

made of the undisturbed specimen. The second exposure is made a short
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time after a disturbance has been introduced into the specimen. The
result is two superimposed images (one formed by each exposure) which show
a contour fringe pattern which is related to the deformation of the speci-
men between exposures. (A discussion of this technique is found in
Appendix A.) The significance of this technique is that the spatial rela-
tionship of the deformation over the entire surface can be observed.

4.1.1 Experimental Technique

The pulsed ruby laser which was used for this study has the unique
capability of producing up to four, long-coherence, optical pulses (wave-
length, A = 69&3;) within one millisecond. The separation between pulses
can be varied from one to 250 microseconds.

The main experimental problem which had to be overcome was that of
synchronizing the laser with the wave propagation event. In order to
understand how this timing problem was solved, it is first desirable to
discuss the characteristics of the pulsed ruby laser.

The basic components of the ruby laser used in this experiment are
two mirrors, a vuby rod, a flashlamp, and a Pockels cell. These are
shown schematically in Figure 6. The two mirrors form opposite ends of
the optical cavity. The ruby rod provides the optical emergy (light) in
a coherent, monochromatic form. The flashlamp "pumps' the ruby rod,
making 1t ready to lase. The Pockels cell is situated between the mirrors
and acts as a shutter for the cavity. When the proper voltage is applied
to the Pockels cell, light is allowed to pass through it forming a com-
plete optical cavity allowing the laser to lase. When there is no voltage
applied, the Pockels cell isolates one mirror from the other and the

optical cavity is no longer complete.
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Precise timing is required for successful operation of the laser.
The voltage to the Pockels cell must be applied from 800 to 900 usec
after pumping the ruby rod by the flashlamp has begun. Only during this
time period is the ruby rod sufficiently energized by the flashlamp for
lasing.

In summary, the laser requires two separate commands, namely, one
to trigger the flashlamp about 850 usec before lasing is to occur, and
the second to activate the Pockels cell 800-900 usec after the flashlamp
has been triggered. To meet these requirements for the proper operation
of the pulsed ruby laser system, careful experimental procedures must be
used. In effect, one must predict to within + 50 usec when the light
pulse from the laser is required and then supply proper triggering signals
to the laser system. The experiments which we performed require that the
Pockels cell be opened about 50 psec after rod impact by a pendulum.
This means that the trigger signal to the flashlamp be supplied about
800 usec before impact. The flashlamp was triggered by means of a photo-
cell and light beam arrangement. This light beam was interrupted by the
spherical pendulum which was used to injtiate the stress wave in the rod.
When the light beam was broken, the pulse from the photocell was used to
trigger a digital delay generator. This delay generator was set so that
its output would trigger the laser flashlamp about 800 psec before impact.

The second triggering pulse (needed for the Pockels cell) was provided
by the electrical contact between the steel pendulum ball and the rod speci-
meti. (A thin coat of conductive paint was applied to the impacted face
of the granite rod.) The signal from this contact was then applied to

the Pockels cell control. This control could be set for a desired time
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delay, At, before switching of the Pockels cell and subsequent lasing
action. The time delay, At, together with the wave speed ¢, can be used
to calculate the position of the wavefront at the time the hologram was
made.

With this timing arrangement, small fluctuations in the pendulum
velocity (Av, say) affect only the pumping time of the flashlamp but do
not causc errors in the time delay of the Pockels cell, At. The actual
time delay, At, was recorded on an oscilloscope and as such could be
determined to within 0.5 psec.

The optics were arranged in such a manner that two holograms can
be made of the stressed rod simultaneously. The positions of these
holograms were chosen in accordance with the analyses given in Appendix A,
Section A.2.2.1.

Referring to equation A.15, the displacement required to form a

fringe on a double exposure hologram is given by

" (2n-1))
2(coso1 + cosez)

(24)

where

A = wavelength of light being used (equals 6943 x 10“8 cm for

a pulsed ruby laser)

0, = angle between the incident illuminating light and the

displacement vector

6, = angle between the line of sight through the hologram and

the displacement vector

n = integer
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One hologram, labeled film plane 1 in Figure 7, is arranged such that for

the radial component of the displacement 01 = 02 = 0° or

- (2n-1)2A
rad 2(cos 0° + ces 0°)

m

(25)

. (2n-1))
4

while for the axial component of displacement, b6 = “2 = 90° or

{(2n-1))

Maxial 2(cos 90° + cos 90°)

(26)

Interpretation of equations (25) and (26) is as follows. For this
hologram a finite radial displacement [given by equation (25)] will cause
a fringe to form. However, it takes an infinite axial displacement
[equation (26)] to form a fringe on this hologram. That is to say, this
hologram is sensitive to radial deformations only. The second hologram,
labeled film plane 2 in Figure 7, is placed such that a line of sight
through it forms a 45° angle with respect to the axis of the cylinder.
This hologram is sensitive to both the axial and radial deformation.
However, since the radial deformation is obtainable from the other holo-
gram, it can be subtracted out to yield the axial deformation alone.

A schematic of the experimental apparatus is shown in Figure 7.
Light emitted from the pulsed ruby laser is split into two parts by means
of a beam splitter. The light transmitted through the beam splitter
serves as the scene beam. A lens placed in the path of the light expands

the beam. A second lens collimates the expanding beam. The collimated
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Figure 7: Experimental setup used to make double-exposure
holographic interferograms of a rod supporting
a stress pulse.
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light then illuminates the cylinder. The light reflecting from the beam
splitter serves as the reference beam. By means of a mirror this beam
of light is directed through a lens where it becomes expanded. The
expanding light is collimated by means of a second lens. The collimated
light reflects from two mirrors (positioned in two different planes) and
illuminates the holograms, i.e., film plane 1 and film plane 2. Film
plane 1 consists of a 11-1/2" long strip of 35 mm film (with proper
emulsions). This length was chosen so that the observer may view any
part of the cylinder perpendicularly to its axis. Film plane 2 consists
of a 4" x 5" plate of film.
4.1.2 Test Procedure and Results

With the apparatus arranged as shown in Figure 7, double exposure
holograms were made of a stressed aluminum rod (2024-T6). The rod
measured 2" in diameter and was 11-3/4" long. The stress pulse was intro-
duced into the rod by impacting one end with a spherical pendulum. The
first exposure of the rod was made before impact. The second exposure
was made 60 usec after impact. First the data contained on the radial
sensitive hologram was reduced in a manner described in Section 4.1.1.
This gave the radial component of the deformation which is shown by the
lower set of data points in Figure 8. A photograph taken through this
hologram is shown in Figure 9a. It should be noted that this photograph
was taken through one part of the hologram and does not show the fringe
pattern in the same way as the scanning analysis, i.e., line of sight
always perpendicular to the axis of the rod. The wavefront is to the
right in this photozraph. The radial deformation reaches a maximum near
the position where the fringes form a byperbola. The large number of
fringes on the left of Figure 9a are believed due to the large longitudinal

deformations in that area.
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(a)

(b)

Figure 9. Holographic Interferogram of a Stress Pulse Propagating
in an Aluminum Rod.

(a) Interferogram sensitive to radial displacements

(b) Interferogram sensitive to both axial and
radial displacements
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The longitudinal deformation was determined from the second
hologram of the same event, i.e., film plane 2. In this case the
hologram is sensitive to both the radial and longitudinal components.

The radial component, having already been determined separately, can be
subtracted out yielding the longitudinal component. The resulting curve
of longitudinal displacement vs position on rod is shown in Figure 8 (data
tabulated in lables 1 & II). A photograph taken through this hologram

is shown in Figure 9b. Again the hyperbola in the fringe pattern is
related to a4 maximum in the radial displacement; it was not readilly
apparent how to interpret the fringes to the left of the hyperbola.

Also shown in Figure 8 are the calculated axial and radial displace-
ments, based upon elementary plane wave theory discussed in Section 2.2.
These calculations are in good agreement with the experimental data. The
analysis assumed a stress pulse having a half-sine wave shape.

This theoretical stress pulse was a close approximation to the
actual stress pulse in the rod, which was measured using the well-known
manganin gauge technique. The shape of the measured stress pulse is shown

in Figure 10.
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Figure 10. Stress Pulse Measured by a Manganin Gauge (Pendulum Impact)
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From the measured values of longitudinal displacement (ux) and
radial displacement (ur), it is possible to compute the dynamic Poisson's
ratio. For example, in the middle section of the rod (x = 10 to 16 cm

in Figure 8) we have

huy 1203 - 668 6

x - Az - 1L.5 - 158 ¥ 10

-124.5 x 10_6(compression)

™
]

X
U 156.2 x 10 % -6
“rTa 2.54 cm = Glod 3 1L
_ -6
er = 61.5 x 10
Finally, we have
€
=__r=6L5_= '
v - 124.5 .494 for Poisson's Ratio

»

This calculation assumes that the rod behaves according to elementary
plane stress theory. The calculated value of v ¥ .5 strongly suggests
that the waves are not plane at the station x = 13 cm. This suspected
non-planar behavior results from the central, point impact which the
steel pendulum ball imparts to the rod.

A similar calculation between the stations x = 22 c¢cm and x = 26 cm
gives

_ 225 = 39.7 6

-6 _ _ -0
€ = 21.8 ~ 26 X 10 " = -44.0 x 10

-0
_ 52,07 x 10°7°_ ,0 o ;0-0

“r © 2,54
r  20.5
vEso —ia sza = ,466 for Poisson's Ratio

X
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The value of v = .466 for 2024 aluminum is high compared to the
value of v = .348 given in Reference 22. This result again suggests
that the elementary theory does not apply to our impact problem. It is
suspected that the wavefronts are non-planar, because of the point load
at x = 0.

Once this double-exposure technique had been demonstrated on the

aluminum rod, similar holographic experiments were done using granite

rods. The results of the experiments are shown in Figure 11, which shows

four interferograws made at various time delays, At. Shortly after these

photos were obtained, the experimental program was redirected toward
obtaining higher stress levels. The latter experiments are discussed in

Section 5.
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Figure 11.

o

Double-Exposure Holograms Showing
Stress Waves in a Granite Rod



4,2 Measurement of the Time-Dependent Displacement
of the Free End of an Impacted Rod

The experiment described here was originally designed to assess effects of
cracks and porosity on wave propagation in rods of geological materials.
Most conventional techniques for dynamic stress and strain measurements,
such as foil gauges, accelerometers, etc., monitor the deformation of the
specimen at discrete locations as a function of time. On the other hand,
double exposure holographic interferometry can measure deformations over
a large area, but only at discrete times. It w;s decided to investigate
a holographic technique which could be used to measure deformations con-
tinuously in granite and aluminum rods. For this purpose, a stored beam
interfercometry technique was developed which can measure the axial and
radial deformation of the surface of a specimen on a real-time basis.

A stored beam interferogram is made by superimposing the virtual
holographic image taken of an object before stresses are applied onto the
actual object (see Appendix A for a discussion of this technique). This
is accomplished by viewing the object through the hologram which has been
repositioned into the exact position it assumed during its exposure. If
the surface of the object is then deformed, an interferometric fringe
pattern is observed in real-time. The fringes which form due to deforma-
tions caused by dynamic impact events of interest for this study occur too
rapidly to be observed with the unaided eye, or even a high speed motion
picture camera. For this reason, it was necessary to develop a photocell
readout technique to monitor the displacement fringes. This imposes the
restriction of observing discrete locations on the surface of the specimen.

One point of particular interest in an experiment involving a stress wave
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traveling down a cylindrical rod is the center of the end of the rod opposite
to the struck end. Thus, a stored beam system was constructed to monitor

the axial deformation at the end rf a struck granite rod. These data may
then be used to calculate the dynamic modulus and attenuation for one-
dimensional stress waves in the material.

4.2.1 Experimental Technique

The stored beam interferometry system was set-up on an 8000-1b granite
table to insure the stability of all components during the tests. A 15
milliwatt HeNe laser (wavelength 6328Z, Spectra Physics Model 124A) was
used to make a hologram of the end of a cylindrical specimen. A schematic
of the holographic setup is shown in Figure 12. A photograph of the actual
laboratory setup is shown in Figure 13.

The light constituting the scene beam illuminated only a small area
at the center of the rod. The hologram was placed in a holder which allowed
it to be precisely repositioned after its development. Using a lens placed
behind the hologram, the interferometric fringe pattern was focused onto
the face of a photocell. The output of the photocell was then displayed on
an oscilloscope where it was photographed.

Tests were made using a 2" diameter granite rod. The granite rod was
supported by two v-shaped holders as shown in Figure 13. Because of the
diffuse scattering of the light from the granite surface, it was necessary
to use a highly sensitive photo pickup device. A photomultiplier tube
(RCA type 7265) with a high sensitivity at 63282 was employed. The output
was read onto a dual beam oscilloscope (Tektronix #556) so that it could

be recorded for a longer time.

40



dn-39g 31s?8] A1jBwoiajiaju] ueag paiols Jo 2TIewdYds 1 2an314

un{npuad p

123317dS
weayg

A W 4

19puIT4)

* 19seq

I011ITR

13T
Te13eds

weag 199

wei30TOH weag paio3ls

sua]

119203044

41



A thin metal foil was attached to the impacted end of the granite
rod. The electrical contact between this foil and the pendulum was used
to trigger the scope. Certain discrepancies in the initial delays of the
fringes can be attributed to poor contact of the foil with the granite.

As the end of the rod is deformed outward, the photocell reads
alternatively light and dark corresponding to the change in path length
of the light. One fringe (dark) will form whenever the displacement of

the end of the rod meets the condition imposed by equation A.15:

. (2n - 1)
= 2(c0561 + cosez) 3 (27)

The sensitivity of this measure can be adjusted by varying 61 and 62.

Figure 13: Granite Cylinder and Spherical Ballistic Pendulum Used
to Develop the Stored-Beam Interferometry Technique
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An elastic stress wave was introduced into the rod by impacting one end
with a pendulum. The oscilloscope traces of two such events are shown in
Figure 14. In both cases, the oscilloscope was triggered by the impact.
The trace in the upper photcgraph is traveling at 50 usec/cm. The initial
stress pulse only produced four fringes indicating that the cylinder was
not struck very hard. The cylinder was hit much harder for the event in
the lower photograph as evidenced by the 21 fringes produced by the initial
stress pulse. (Here the trace has been delayed by 40 usec after impact and
sweeps at 10 psec/cm.) In these photographs, each succeeding fringe can
be interpreted as a displacement of k A/2, where k is found by inserting
the proper angles into equation 27. The theory of the wave propagation in
a rod, as it pertains to these experiments and the resulting data analyses
are presented in the next two sections.

4.2.2 Llongitudinal End Displacement (Theoretical Results)

The stress wave profiles induced by ball impacts are, in general,
not simple analytic flunctions. It is useful, however, to consider a rectangular
pulse propagating to the right along a rod, as analyzed by elementary

theory. The pulge height is o, and its width is A (sec.), Figure 15.

Figure 15: Rectangular Stress Pulse
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Figure 14. Oscilloscope Traces of P ~ell Outputs During
Spherical Pendulum-Aluminc 'i+ ler Tests



This rectangular pulse can be considered as the superposition of two

step functions, separated in time by a delay, A.

) Pulse 1
o)

—— 8 ——— t

- Pulse I1
0

Figure 16: Superposition of Two Step Functions

When the first pulse (I) strikes the free end of the bar, the dis-

placement starts from zero with a velocity given by

The corresponding end displacement is

20

- _0 L _
gI-pco (t Co) for 0 < t z/coiA

where l/co is the time required for the pulse to travel the length of the
rod. When the second pulse (II) arrives, it imparts a velocity given by

J [o)

since Pulse II is the negative of Pulse I. Superimposing the results from

Pulse I and Fulse II, we have
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brotal = b1t bpp

. 20o

Erotal ™ N for 0 < t - 2/c° <A
. 200 200

frotal e g 0 for A < t - l/co

as long as no reflections from the left end of the bar occur. However,
the original rectangular compression pulse (which started out moving to

the right) reflects as a tension pulse moving to the left. (See Figure 17)

s , compression s
o n"’ G Before Reflection

After Reflection

c <——|_I-o , tension
Q (o]

Figure 17: Reflection of Pulse at the Right End of the Bar

When the tensile pulse reaches the left end of the rod, it reflects
as a compression pulse moving back to the right, since the left end is
stress-free. This second compression pulse can be handled just like the
original one, and the process is repeated. The second pulse arrives at
the right end at a time 22/c° after the first pulse. lThis is the time
required for the pulse to travel once to the left and then back to the
right along the rod. The resulting displacement-time history (at the right

end of the rod) is shown in Figure 18 by the solid line.
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Figure 18. End Displacement, 7, for a Rectangular Compression Pulse
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In actual experiments, the pulse shape is not rectangular, but is
rounded off at the corners. The effect of a rounded pulse is to alter the
displacement-time history, as shown qualitatively by the dashed line in
Figure 18.

4,2,3 Experimental Results

Figure 19 shows the oscilloscope record of a spherical pendulum-
granite cylinder impact. A dual-beam oscilloscope was used to extend the
time span over which the record was taken. Both traces swept at 20 usec/cm.
The upper trace was triggered by an electrical contact just prior to the
impact. The lower trace has been delayed 180 usec, so that the total
record extends for 380 usec. For these tests, the angles of incidence
and reflection of the light off the granite cylinder were both 18°, there-
fore, from equation 27, each fringe represents a surface displacement of
1.66 x 10-5 cm, )

The data from Figure 19 was interpreted to yield a time history of
the free end displacement of the granite rod (Figure 20). The stress
pulse due to the impact reached the free end of the bar at 80 usec after
the scope was triggered. At this time, the surface was accelerated outward.
An analysis of this curve can yield information on a number of material
properties of the granite specimen.

The stress pulse had a duration of ~90 usec. Differentiating this
curve would yield its magnitude and time history. Upon reaching the free
end of the rod, the stress pulse is reflected, travels back down the rod
and is eventually reflected back to the free end at 208 pysec. At this
time the free surface is again accelerated. The sound velocity of the
rod can be calculated from this round trip transit time of 128 usec. The

length of the granite rod is 11-1/4 inches yielding a velocity of .45 cm/usec.
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Fringe Order

Figure 19 Oscilloscope record of apherical pendulum granits
Lower

cylinder impact. Time scale is 20 wsec/cm.
trace is delayed by 180 wsec.

10 Test A
80—
60}
40
20
0
80 120 160 200 240 280 320 360
Time (usec)
Figure 20 Displacement time history of the free end of the granite

cylinder as determined from the oscilloscope trace shown in

Figure 19, _
(Each fringe corresponds to a displacement of 1.66 x 10

cm)
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Note that the time lag between the second and third pulses yields the same
result: c.- 0.45 cm/ sec. The sound velocity can then be used to find

Young's Modulus for the material:
2
E=c,b

11 2

= 5.3 + 0.1 x 107" dyne/cm

We note that this stress pulse as a dynamic Young's
Modulus which 1is 6% higher than that determined by the static com-
pression test (section 2). The maximum free surface velocity can be found
by taking the slope of the curve: 9.5 cm/sec. From these numbers, the

stress, strain and rate of strain can be calculated:

£ .
maximum stress = O, = —7§§ p_c where £_, 18 the velocity of
the free surface

5.6 x 106 dyne/cm2

o
X
strain = ¢ = E

| |
=
-
o
-
(=)
]

€

strain rate = éx =7
5 pulse duration

0.24 sec-1

Attenuation effects in the specimen can be measured by comparing the
stress pulses for successive reflections and noting the total displacement
due to each pulse., The test shown in Figure 20 shows that both the first
and second pulses produced a displacement of 39 fringes or 6.5 x 10’4 cm.

Thus, the attenuation of the stress curve, o, is measured to be less than
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2,62 x 10-4 nepers/cm. One would expect that the attenuation constant
could be measured to greater accuracy if the time history was recorded
for longer times.

Figures 21 and 22 show a record of another granite impact test.
Here, the rod was not impacted as hard as in the previous case as evidenced
by less fringes per pulse (34 as compared to 39 previously). Analysis of
these data yields results similar to those discussed above.

4,2.4 Evaluation of Stored Beam Interferometry

The ability of this system to record dynamic events is limited by
its high sensitivity. For fast events, too much data is acquired too fast
to be handled by conventional recording equipment. The photomultiplier
tube used in these tests had a rise time of 6 nanoseconds. Faster photo
devices are available, however, the system is limited by other components.
Most conventional recording instruments such as charts, tapes, disc or
even on-line computer cannot record data as fast as it is processed by
the photomultiplier tube. One practical method is an oscilloscope which,
although it has the speed, is limited in the amount of data which can be
recorded, i.é., only a finite number of data points can be resolved on a
single trace. A dual-beam scope was used for this study to double the
storage capacity. Other solutions could be to use a larger number of
oscilloscope traces with consecutive time sweeps or to use a raster type
of display. In any case, it appears that the type oi recording instrumentation
used will determine the limitations of system,

The recording of fringes at the rate of 2 x 108 per second was

attainable with instrumentation used for this study. If each fringe
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Figure 21: Oscilloscope record of spherical pendulum-granite
cylinder impact. Time scale is 20 usec/cm. Lower

trace is delayed by 180 usec.
Test B
10 gemm—

1 %

60}

40} ;‘/“,"

20

Fringe Order

080 120 160 200 240 280 320 360 380
Time (usec)

Displacement time history of the free end of the granite

Figure 22:
cylinder as determined from oscilloscope record shown in Fig. 21.

(Each fringe corresponds to a displacement of 1.66 x 1072 cm)
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represents a displacement of 2/2 = (3.164 x 10-5 cm), then this represents
a surface velocity of 6.328 x 103 cm/sec., From equation 27, it is apparent
that the system can be de-sensitized by increasing 01 and 02. In practice,
this allows a maximum readable surface velocity to be increased by about

a factor of 3 or in this case to 1.9 x 104 cm/sec. While this is adequate
for many experiments, it is too low for the high stress level experiments

which were planned for the second part of this study.
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5.0  LARGE AMPLITUDI. STRESS WAVE PROPAGATION STUDY

The experiments described in the previous section were performed
at relatively low stress levels. There, emphasls was placed on developing
general holographic techniques which could be applied to study low
amp litude clastic wave propagation in geological materials. This section
describes efforts applied to developing holographic instrumentation to
study large amplitude stress propagation in the plane strain regime.
In this regime, very close to the point of impact, the stress wave has
not yet been influenced by edge effects. In the sections which follow,
a description of the experimental apparatus, experimental results and
correlation with other published data is presented. The theoretical
aspects of wave propagation in the plane strain regime are given in
Section 3.3.

5.1 Experimental Method

A straightforward technique for producing plane shock
waves in target materials is by impaction with a flat plate which has
been accelerated to high velocity by means of a gas gun.?'3 Upon impact
of the plate with the target, plane shock waves are driven into both the
target and impactor. Two of the many simple target geometries which can
be used in such experiments, are a flat plate and a wedge. The flat plate
target is the conventional configuration which has been used to obtain
Hugonlots of materials. The shock wave velocity 1s obtained from the
known thickness of the target, and the measured transit time of the shock.
The particle velocity is either deduced from the target free surface

velocity or from use of the impedance mismatch technique.18 In the latter
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case,the projectile velocity must be measured, From the previous discussions
it should be apparent that these two measurements are sufficient to

define a state on the material's Hugoniot. Holography could, in principle,
be used here to obtain either the surface displacement or velocity at
specific times. This configuration, however, does not exploit the iique
capapility that holography offers; that is, the determination of the
three-dimensional displacement or velocity field at specific times. By
inclining the surface opposite the impacted surface at some angle, the

whole temporal history of the wave interaction with the free surface can

be determined from a single hologram. Figure 23 is an illustration of

a wedge configuration of granite, in which a flyer plate of granite impacts
and drives a shock into the wedge. The geometrical constraints on the

flyer plate's thickness and wedge angle are to be discussed in Section

5.1.1. The shock wave, upon reflection, accelerates and deforms the

free surface. The displacement of the free surface at various times,'or

in the case of a wedge, at various shock propagation path lengths, provides
information on the states achieved by the material during the shock and
subsequent adiabatic release processes. If the material were elastic~
plastic, the positions at which changes in the free surface velocities

take place reflect the positions of the various shock and release waves.
Also, values of the resultant free surface velocities reflect the amplitudes
of these waves. 1In the case where a material exhibits a phase change,

this would manifest itself in a variation in the gradient of the displacement
along the wedge surface. If the material work hardens, then the displacements

and velocities between the elastic and plastic waves would not have a
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constant gradient. Release wave positions and the subsequent expansion
can also be determined from changes in the displacements and from the
free surface velocities. Therefore, an examination of the morphology
of the holographically determined displacement or velocity field would
quickly determine the material class of the target.

It will be demonstrated in the following sections how, using holo-
graphy and wedge shaped targets, release wave velocities can be obtained.
Further refinements within the state-~of-the-art should enable the whole
velocity or displacement history of the release to be determined. But
just the knowledge of the release wave velocity is an important and
hitherto very difficult property to measure.

5.1.1 Constraints of Wedge and Flycr Plate Geometries

In designing experiments in which plane shock waves are desired,
the effects of release waves generated from the boundaries must be considered.
There are two main classes of wave systems, catch-up and lateral release.
Catch-up wave systems are a result of the flyer plate having a finite
thickness and lateral release wave system are a result of the target having

finite lateral dimensions.

5.1,1.1 Catch-up Waves

When a flat flyer plate impacts a semi-infinite halfspace with a
velocity V, two shock waves are generated.24 See Figure 24. From the
interface, a shock propagates into the target halispace at a velocity
U and another shock propagates into the flyer plate at a velocity -(U-v),
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